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Abstract
Numerical studies involving random copolymers and random surfaces assume
self-averaging of thermodynamic and metric properties of the systems to
calculate different properties. For the problem of adsorption of a random
copolymer, rigorous proofs regarding self-averaging of some properties such
as free energy in the thermodynamic limit (n → ∞) exist. This says little
about the extent of self-averaging for finite size systems used in numerical
studies. For the problem of adsorption of a homopolymer on a random surface,
no analytical proofs regarding self-averaging exist. In this work assumptions
of self-averaging of thermodynamic and metric properties of a self-avoiding
walk model of random copolymer adsorption are tested via multiple Markov
chain Monte Carlo method. Numerical evidence is provided in support of
self-averaging of energy, heat capacity and the z-component of the self-
avoiding walk in different temperature intervals. Self-averaging in energy
of a homopolymer interacting with a random surface is also examined.

PACS numbers: 82.35.Jk, 05.10.Ln

1. Introduction

In recent years, the study of random systems such as random polymers and random surfaces
has received a great deal of attention (Moghaddam et al (2002) and references therein). In
numerical studies of random systems, a measurement of a thermodynamic property such as
free energy, specific heat or internal energy, or a metric property of the system such as radius of
gyration yields a different value for the exact average of every sample. Most numerical studies
assume self-averaging of the properties and calculate only the ensemble averages (see for
example, Sumithra and Baumgaertner (1999) and Moghaddam et al (2002)). This assumption
implies that the properties of the system do not depend on the particular realization of the
random variables. In most cases, these assumptions have not been verified although there
have been a large number of studies investigating self-averaging of different properties in
various random systems. Examples include works by van Hemmen and Palmer (1982) who
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proved thermodynamic self-averaging for a random magnet with short range interactions, van
Enter and van Hemmen (1983) who proved the same for a random magnet with large range
interactions, Wiseman and Domany (1998a, 1998b) who discussed lack of self-averaging in
critical disordered Ising models in three dimensions, Derrida and Hilhorst (1981) who proved
the absence of self-averaging in correlation functions of random magnets, Buffet and Pule
(1997) who found that the free energy of a model of continuous polymer with random charges
does not self-average and Aharony and Harris (1996) who studied the absence of self-averaging
in random systems near critical points.

With regard to random polymers, Chuang et al (2001) examined self-averaging of free
energy in self-interacting random heteropolymers by exact enumeration, and Orlandini et al
(1999) proved that the free energy of the self-avoiding walk model of adsorption of a quenched
random copolymer self-averages. They have also examined the self-averaging of heat capacity,
Cn(α), which is related to the second derivative of free energy with respect to temperature
for the self-avoiding walk model of random copolymer adsorption (Orlandini et al (2002)).
They proved the existence and finiteness of the limit of Cn(α). They also proved that under
certain conditions such as boundedness and the approach to the limit from one side (below or
above), Cn(α) self-averages far from the critical point for second and higher order transitions.
By self-averaging it is meant that in the thermodynamic limit (as n → ∞), with regard to
some property, Pn(χ), which depends on the size (n) and the particular realization (χ), ‘most’
realizations of the randomness have the same value of that property. By a quenched random
copolymer it is meant that the sequence of comonomers is fixed during the computation of
thermodynamic and metric quantities.

This work in part deals with a numerical investigation of self-averaging in energy, heat
capacity and a metric property of a self-avoiding walk model of adsorption of a quenched
random copolymer by multiple Markov chain Monte Carlo (MMCMC) method. Investigating
self-averaging in thermodynamic and metric properties of random copolymer adsorption is of
interest for the following reasons. First, the rigorous proofs regarding self-averaging such as
the one by Orlandini et al (1999) are done in the thermodynamic limit (n → ∞). It is not
clear whether self-averaging proved in the n → ∞ limit (macroscopic) will apply to random
copolymers of a few hundred monomers (mesoscopic); yet, these results have not been verified
in numerical studies which involve only finite size samples.

Secondly, analytical proofs regarding self-averaging (Orlandini et al (1999)) usually prove
self-averaging of a property but say little about the extent of self-averaging in a finite size
system. This is to address the questions of to what extent the properties of a molecule depend
on a particular realization of the quenched random variable for a finite size system. James
and Whittington (2002) have examined the thermodynamic self-averaging of free energy in a
coloured self-avoiding walk model of finite random copolymer adsorption and derived a bound
on the extent of self-averaging as a function of the length of the self-avoiding walk. They
obtained a power-law n-dependence of the free energy and defined an exponent for this relation.
In this work, the extent of self-averaging in the energy of the random copolymer adsorption
problem is examined by speculating a power-law dependence for energy and looking at the
trends observed in a qualitative way. A proof of this relationship or an estimate of the exponent
is beyond the scope of this work. The nature of the investigation is important as a first step in
enhancing our understanding of an area where little work has been done so far.

Thirdly, many experimental studies involving random polymers are concerned with
measurements of the mean fraction of visits or some metric property such as radius of gyration
or the end-to-end distance. If these properties self-average, in practice, a measurement on
a single very long polymer can represent the property of the ensemble. If it does not self-
average, the measurement of a property of a single sample does not give a meaningful result
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regardless of the sample size, and measurements have to be repeated on many samples. Thus
self-averaging of the metric properties is not trivial; yet, there has not been an analytical or a
numerical investigation of self-averaging in terms of metric properties of random copolymers
interacting with a surface. There have been some studies examining self-averaging in metric
properties of random systems. For example, lack of self-averaging of metric properties of
random systems such as correlation functions in random magnets has also been studied by
Derrida and Hilhorst (1981). This study examines self-averaging of the root mean square of
the z-component of the vertices of the walk.

For the case of adsorption of a homopolymer interacting with a random surface, there has
been no analytical proof of self-averaging of various properties. Numerical studies usually
assume self-averaging of thermodynamic properties and evaluate the ensemble averages of
energy and heat capacity. There has been no numerical verification of this assumption. In this
work, self-averaging of energy of a homopolymer interacting with a random surface is also
examined by MMCMC calculations.

2. Method

The model for the random copolymer in this study is a particular case of that studied by
Orlandini et al (1999). An n-edge self-avoiding walk on the simple cubic lattice Z3 is
considered. The vertices of the walk are numbered i = 0, 1, . . . n, and the 0th vertex is fixed at
the origin. All vertices are constrained to have non-negative z-coordinate, and the plane z = 0
is the plane at which adsorption can occur. In the case of a random copolymer interacting with
a surface, the vertices of the self-avoiding walk i = 1, 2, . . . n are randomly and independently
labelled A or B such that the probability of a vertex being labelled A is p. Let cn(vA|χ) be the
number of n-edge walks with these constraints, having a labelling χ , and having vA vertices
labelled A in the plane z = 0. The partition function for a fixed labelling is

Zn(α|χ) =
∑
vA

cn(vA|χ) eαvA (2.1)

where α = −ε/kBT with T as the temperature, ε(<0) as the attractive interaction energy
of the self-avoiding walk with the surface and kB as the Boltzmann constant. The quenched
average free energy κ̄(α) is

κ̄(α) = lim
n→∞〈n−1 log Zn(α|χ)〉 (2.2)

where 〈· · ·〉 represents an average over the labellings χ . κ̄(α) depends on the parameter p but
this dependence will normally be suppressed in the notation. Orlandini et al (1999) showed
that the limit in (2.2) exists for all α < ∞ and that, for all α � 0, κ̄(α) is equal to κ̄(0) ≡ κ3,
the connective constant of the simple cubic lattice. Define αc such that

αc = max[α|κ̄(α) = κ̄(0)] (2.3)

so that αc is a singular point of κ̄(α) in the ∞ − n limit. The walk is desorbed for all α < αc

and adsorbed for all α > αc.
For any fixed value of p, 0 � p � 1, the quenched average free energy for finite n, κ̄n(α),

is given by

κ̄n(α) =
2n∑

j=1

pmj (1 − p)n−mj n−1 log Zn(α|χj ) (2.4)

where χj is the jth labelling, mj is the number of vertices labelled A in this labelling, and the
sum is over the 2n possible labellings. Differentiating with respect to α gives the quenched
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average energy per edge, i.e. the mean number of A vertices in the surface divided by n. That
is

∂κ̄n(α)

∂α
=

2n∑
j=1

pmj (1 − p)n−mj n−1

[∑
vA

vAcn(vA|χj)eαvA∑
vA

cn(vA|χj)eαvA

]
= 〈vA(α)〉

n
(2.5)

where the final angular brackets represent an average over configurations at fixed labelling,
followed by an average over labellings.

This system is strongly interacting; therefore a multiple Markov chain approach is used.
In this approach one samples at a variety of different temperatures at the same time and ‘swaps’
configurations between different temperatures with swap probabilities chosen so that the limit
distribution of the process is the product of the Boltzmann distributions at the individual
temperatures. The method was originally invented by Geyer (1991) and was first used in
polymer statistical mechanics by Tesi et al (1996). Details can be found in those references.
The underlying (symmetric) Markov chain used was a combination of the pivot algorithm (Lal
1969, Madras and Sokal 1988) and local moves (Verdier and Stockmayer 1962).

〈vA(α)〉/n and the corresponding quenched average heat capacity

Cn(α) = ∂2κ̄n(α)/∂α2 (2.6)

are calculated for various values of n and α for the specific case of p = 1/2. In each case
the energy and heat capacity are calculated for a fixed labelling (monomer sequence) and then
averaged over about 40–120 different labellings. It was found that at larger values of n fewer
labellings were required; this provides some evidence for the thermodynamic self-averaging
of the system in the n → ∞ limit.

In order to verify self-averaging for finite values of n, the energy (averaged over
conformations) at several fixed labellings has been calculated. That is,

〈vA(α|χ)〉
n

= 1

n

∑
vA

vAcn(vA|χ) eαvA∑
vA

cn(vA|χ) eαvA
(2.7)

as a function of α and n for several fixed values of χ was calculated. With n and α fixed there
will be a distribution of values of 〈vA(α|χ)〉

n
and the variance of this distribution was estimated

as

V (α, n) = (s − 1)−1
s∑

j=1

(
〈vA(α|χj )〉

n
− 〈vA(α|χj )〉

n

)2

(2.8)

where the sum runs over s randomly chosen labellings and the bar represents a sample average
over labellings. The same quantity for Cn(α) of the walks was calculated in a similar way.

Self-averaging of a metric property of the random copolymers interacting with a surface
is also examined numerically in the following way. For different random realizations of the
self-avoiding walk, the mean z-coordinate of the vertices of the walk (z) is calculated for
various α and n values and then averaged over the realizations. That is, the variance of the
mean of the distribution (Vz(α, n)) is calculated and divided by the square of the expectation
of z since z is an unscaled variable as follows:

Vz(α, n)/z(α|χj )
2 = (s − 1)−1

s∑
j=1

(z(α|χj) − z(α|χj))
2/z(α|χj)

2 (2.9)

where the sum runs over s randomly chosen labellings and the bar represents a sample average
over labellings.

To investigate the validity of the assumption of self-averaging of energy for the adsorption
a homopolymer in a random surface, MMCMC calculations are performed over 40–120
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Figure 1. The variance of the 〈v〉/n as a function of α for a random copolymer interacting with
a homogeneous surface for p = 1/2, n = 50(+), 100(×), 200(�) and 400(∗). The error bars
indicate the estimated sampling errors. The results indicate self-averaging of energy away from
the critical point.

realizations of the surface for various sizes of homopolymers. Once again the polymer is
modelled as a self-avoiding walk on the simple cubic lattice, starting at the origin and confined
to the half-space z � 0. The sites of the surface, plane (z = 0), are of two types, only one of
which interacts with the monomers of the polymer. These sites are labelled A with probability
p or B with probability 1 − p, uniformly and independently. The rest of the procedure is
basically the same as the one in the case of the adsorption of the random copolymer except
that in this case the averaging is performed over the realizations of the surface.

3. Results and discussion

Figure 1 shows the α-dependence of V (α, n), the estimated variance of 〈vA(α|χ)〉/n, for
different values of n. The error bars are the estimated sampling errors in each case. It can
be seen that the variance curve grows slowly for some values of α (<αc); rises sharply in
the neighbourhood of αc and then decreases very slowly for α � αc for all values of n. An
estimate of αc is obtained by taking the location of maxima in Cn(α) peaks at various values of
n and using finite size scaling arguments (for details see Moghaddam et al (2000)). In general,
V (α, n) decreases as n increases for values of α far from αc. This indicates self-averaging of
〈vA(α)〉/n in intervals of α both below and above αc. In the region where α ≈ αc it is difficult
to establish a definite trend due to the presence of strong fluctuations.

It can also be seen (figure 1) that the extent of self-averaging is not the same for all values
of α. That is, the rate of convergence of the energy of sequences to the mean value of energy
is not the same at different values of α. There is no analytical proof of the existence of a
power-law n-dependence for the energy in the adsorption of a random copolymer; however,
the plot of the logarithm of variance of 〈vA(α)〉/n as a function of log(n) at different values
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Figure 2. The variance of the heat capacity Cn(α), (Vc(α, n)), as a function of α for the quenched
random copolymer interacting with a surface when p = 1/2, for n = 50(×), 100(+), 200(∗) and
400(�). The error bars indicate the estimated sampling errors. The results indicate self-averaging
of heat capacity away from the critical point.

of α exhibits a linear relationship. The slope of this line can be related to the exponent of
n, if one speculates a power-law n-dependence of the energy. The value of this exponent is
found to be the largest for α < αc, the smallest for α ≈ αc and at an intermediate value for
α > αc. These values suggest that there should be different regimes for the convergence of
the energy of the labellings to the mean energy. For α < αc, the value of the exponent is very
large indicating a very fast convergence in contrast with the case α ≈ αc where the value of
the exponent is at a minimum indicating a very slow convergence. For α > αc, the value of the
exponent is between those for α ≈ αc and α < αc. This suggests that the rate of convergence
at values of α > αc is an intermediate value between the rate of convergence near the critical
point and the rate for α < αc interval. These results are obtained for n up to 400 and are not
sufficient to allow for a quantitative estimate of this exponent. However, they suggest that
the difference between the energy of the system with a randomly chosen colouring and its
expectation over colourings may follow a power-law dependence.

Figure 2 shows the α-dependence of the variance of Cn(α), (Vc(α, n)), for different values
of n. Once again, the variance of the mean of the distribution of the labellings for each value
of n slowly rises with a sharp increase in the vicinity of αc followed by a decrease for values of
α > αc. Similar to the case in figure 1, three distinct α regimes are recognized. For α < αc,
the variance of Cn(α) decreases as n increases indicating the self-averaging of Cn(α) in this
region. A similar trend is observed for α > αc providing evidence for self-averaging of Cn(α)

in this interval. For α ≈ αc, however, the trend is reversed: as n grows larger, the variance of
Cn(α) grows larger. Based on these results, Cn(α) does not self-average at the critical point.

Figure 3 shows the quenched average Cn(α) over all labellings for different values of
n. The increase in height of Cn(α) peaks with an increase in n provides evidence that the
adsorption transition of the self-avoiding walk model of a quenched random copolymer is a
second-order one. It can also be seen that for α < αc,Cn(α) values decrease as n increases.
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Figure 3. Quenched average Cn(α) as a function of α for n = 50(+), 100(×), 200(∗) and 400(�).
The insets zoom on α intervals below αc (left) and above αc (right). Provided that the limiting
Cn(α) is finite, as indicated by the numerical data, these results meet the conditions proposed by
Orlandini et al (2002) for self-averaging of Cn(α) below and above the critical point.

Since the limiting Cn(α) is non-negative,Cn(α) values at different values of n have to approach
this limiting value from above. For α > αc,Cn(α) values increase as n increases. In this
case, Cn(α) is bounded from below. Provided that the limiting Cn(α) is finite, as indicated by
the numerical data, these results meet the conditions proposed by Orlandini et al (2002) for
self-averaging of Cn(α) below and above the critical point.

Figure 4 shows the variance of z as a function of α for self-avoiding walks of 50, 100, 200
and 400 edges modelling the random copolymer of corresponding sizes interacting with a
surface. Once again, the variance is increasing as α increases for various values of n. There
are three distinct regimes of α < αc, α ≈ αc and α > αc over each of which the variance
of mean z-coordinate of the walk behaves in different ways. For values of α far from αc the
variance decreases as n increases providing evidence for self-averaging. In the vicinity of αc

the variance, it is hard to establish a trend since the fluctuations are too strong.
Figure 5 shows the variance of 〈vA(α|χ)〉/n, V (α, n), as a function of α for self-avoiding

walks of 50, 100, 200 and 400 edges modelling the homopolymer of corresponding sizes
interacting with a random surface. The results are for the case where the probability of a site
on the surface being A, p, is 0.6. The variance is increasing as α increases for different values
of n. There are three distinct regimes of α < αc, α ≈ αc and α > αc over each of which
the variance of 〈vA(α|χ)〉/n behaves differently. For values of α far from αc the variance
decreases as n increases. This indicates that the energy of any particular sequence becomes
closer to that of the expectation over labellings as n increases. In the vicinity of αc a definite
conclusion cannot be drawn due to large fluctuations in the data. The results for values of
p below the percolation threshold of the surface, such as the case when p = 0.5 exhibit the
same trend. The main result in this section is that energy self-averages below and above
the critical point for a homopolymer interacting with a random surface. That is to say, far
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Figure 4. The variance of the mean z-coordinate of the walk, (Vz(α, n)), for the random copolymer
interacting with a homogeneous surface for p = 1/2, n = 50(�), 100(∗), 200(×) and 400(+).
The error bars indicate the estimated sampling errors. Self-averaging of the mean z-coordinate of
the walk is clearly indicated far from the critical point.
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Figure 5. The variance of the 〈v〉/n as a function of α for a homopolymer interacting with a
random surface for p = 0.6, n = 50(�), 100(+), 200(×) and 400(∗). The error bars indicate the
estimated sampling errors. The results indicate self-averaging of energy away from the critical
point.

from the critical point, energy values for any particular sequence approach the expectation of
energy over many labellings as n increases.
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4. Conclusion

Monte Carlo methods are used to investigate self-averaging in thermodynamic and metric
properties of the self-avoiding walk model of a quenched random copolymer interacting with
a homogeneous surface. In this case an analytical proof of self-averaging of the free energy
in the thermodynamic limit exists; however for metric properties no such proof exists. The
temperature dependence of the variance of energy, heat capacity and the mean z-coordinate
of the vertices of the walk is investigated numerically. The evidence provided in this work
supports the assumption that these properties self-average in certain temperature intervals far
from the critical point. At the critical point these results are not conclusive. These results verify
the assumption of self-averaging made in calculating thermodynamic and metric properties
in the case of the adsorption of a finite size random copolymer onto a surface. The extent of
self-averaging in energy is also examined and commented upon.

MMCMC is also used to investigate self-averaging in the energy of a homopolymer
interacting with a quenched random surface. For this problem there is no analytical proof of
self-averaging even in the thermodynamic limit. Far from the critical point, self-averaging in
energy is observed. In the vicinity of the critical point, no definite conclusions can be drawn.
These results verify the assumption of self-averaging made in the case of the adsorption of a
homopolymer onto a random surface.
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